
Distance-DependentVelocityEstimationusing
pre-computedFeatures

Moritz Kampelmuehler1*, Michael Mueller2* and Christoph Feichtenhofer1

Institute of Electrical Measurement and Measurement Signal Processing1

Institute for Theoretical Computer Science2

Graz University of Technology, Austria
* These authors contributed equally.

Overview
Single-view velocity estimation is a relatively recent task in autonomous driving which has not yet been thoroughly explored. The task
is to estimate the velocity of a specific vehicle from a set of monocular camera images to aid autonomous driving algorithms.

Given the camera calibration and ground truth position of the vehicle, this problem could accurately be solved using geometry only.
However, in absence of the ground truth data, the representations need to be learned.

It is well known that machine learning algorithms grealty benefit from mapping the input data into a beneficial feature space. Here,
we present a two-stage approach to single-view velocity estimation that is based on a) feature extraction using models pre-trained on
different datasets, and b) representation learning based thereupon.

Feature Extraction
The feature extraction stage makes use of several state-of-the-art methods in computer vision.

Disparity. To obtain dense disparity maps of the RGB images, we use monodepth [4], which is an unsupervised monocular depth
estimator. It is trained the on Cityscapes [2] and KITTI [3] Datasets.

Flow. 2D optical flow data is calculated using FlowNet 2.0 [5] trained on FlyingThings3D [7]. This network allows to calculate dense
optical flow between pairs of frames.

Bound Box Tracking. Since the bounding box is only given for the final frame of the input image sequences, we perform tracking
(backwards through time) to obtain bounding boxes for all frames. For this task, we use a fusion of the Medianflow [6] and MIL [1]
tracking algorithms.

40
512x256x3

RGB

40
512x256x3

RGB

40
1280x720x3

RGB

monodepth

FlowNet 2.0

Medianflow/
MIL

tracker

40
512x256x1
disparities

39
512x256x2
flowmaps

40
bounding

boxes

cropping
averaging
filtering

cropping
averaging
filtering

resizing

40x1
disparity
values

39x2
flow

values

40
bounding

boxes

Figure 1: Feature extraction procedure.

Pipeline. The full procedure of the feature extraction stage is depicted in Figure 1. Due to architecture constraints, the HD input
RGB images are resized to 512x256. For both flow and disparity the network outputs are cropped and averaged over the respective
bounding boxes. To provide smooth estimates over the frames, these averaged values are filtered using a Gaussian kernel. While the
tracking is applied on the 1280x720 inputs, the obtained bounding boxes are later resized to match the disparity and flow map size.

Figure 2: (from left to right) Disparity map, RGB, Flow map.

Figure 2 shows a visualization of the feature outputs. The left image depicts the dense disparity map over the RGB image. The middle
image shows the raw mono RGB image. On the right the dense optical flow representation is given. An example bounding box of a
vehicle is shown for reference.

Model
These pre-computed features allow us to use rather shallow fully-connected neural networks to achieve good estimation performance.

Data Split. The relationship of the precomputed features to the learning target is highly nonlinear. To simplify learning, the data
set is split into three subsets according to the bounding box area of the last frame to obtain disjoint sets for near, medium, and far away
vehicles. This classification shows some variance near the borders between different sets, but nevertheless simplifies the learning task.

Architecture. On each of these three sets, cross-validation was performed to obtain a good architecture. The resulting network
topologies are (layers x units) 3x40 (near), 4x60 (medium), and 4x70 (far). All hidden units use complementary rectified linear units
[8], thus, the layer output sizes are twice the input size.

Training. For all distances, we train for 2000 epochs using minibatches of 50 samples on the MSE between network output and
targets. For regularization, weight decay and Dropout were used. The training data for each distance is split up into five partitions.
Four of these are used as training set, the fifth is used for validation. After 2000 epochs, the model with the lowest validation error
is saved. This results in 3x5 models for the entire dataset. Note that the number of examples per neural network is quite small, so
overfitting may occur easily as the validation score is no longer an accurate estimate of the error on the test set.

Model Averaging. When evaluating the test set, we split the data according to the computed bounding box areas using the same
procedure as for the training set. Then, the average over all five models for the respective distance is computed.

Discussion
Results. The final results are given in terms of the mean squared velocity error

EV,C =
1

|C|
∑
c∈C

||Vc − V̂c||2 (1)

which is computed separately for near, medium, and far vehicles and averaged to get the final score. (The classes are split by position
according to the ground truth distance of target car to camera, so this split does not necessarily correspond to our split of models.) The
final average score across all three classes was

∑
C EV,C = 1.3021.

Discussion. The presented approach builds on pre-computed features and achieves good results (winning score on the TU Simple
Velocity Estimation Challenge 2017). Better results could be achieved by merging the pre-trained models for feature extraction with
the final layers to allow error backpropagation to the feature extraction layers for fine-tuning in a single pipeline.

References
[1] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 983–990. IEEE, 2009.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3213–3223, 2016.

[3] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[4] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth estimation with left-right consistency. In CVPR,
2017.

[5] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[6] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of tracking failures. In Pattern recognition
(ICPR), 2010 20th international conference on, pages 2756–2759. IEEE, 2010.

[7] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4040–4048, 2016.

[8] W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding and improving convolutional neural networks via concatenated rectified
linear units. CoRR, abs/1603.05201, 2016.

